2024-06-080445.48 KB9页
2024-06-080287.54 KB8页
2024-06-08028.29 MB24页
2024-06-0803.46 MB14页
5.1.1向量的内积及性质2本节讨论•向量的内积•向量的长度•向量的正交性定义1内积.一、内积的定义及性质设有n维向量1122,,nnxyxyxyxy1122[,]nnxyxyxyxy令,[,]xyxy称为向量与的[,].TTxyxyyx事实上,内积的运算性质许瓦兹不等式.,,,:xyzn其中为维向量为实数(1)[,][,];xyyx(2)[,][,];xyxy(3)[,][,][,];xyzxzyz(4)[,]0,0[,]0.xxxxx... 2024-06-080419.91 KB13页
2024-06-080394.32 KB3页
2024-06-0804.39 MB129页
2024-06-080179.49 KB6页
2024-06-080991.1 KB3页
如果能够求出S的一个基S0,则S的任意元素(齐次线性方程组的解)都可由该基线性表示.齐次线性方程组的解的全体S是一个向量空间,称S为该方程组的解空间.0Ax解空间的基是怎么定义的?它由几个线性无关的向量构成?如何求解空间的基?问题12(1),,,0;rAx是的一组线性无关的解12(2)0,,,.rAx的任一解都可由线性表出定义12,,,0rAx的基础解系,如果称为齐次线性方程组定义1.基础解系的定义上式称为的通... 2024-06-080295.71 KB13页
2024-06-080864 KB8页
2024-06-080282.98 KB5页
2024-06-080124 KB2页
,则与共线几何:存在唯一的实数k,使得=k称作:能由线性表示几何:k1k2=k1+k2与不共线,则与,共面存在实数组k1、k2,使得=k1+k2称作:能由,线性表示定义给定向量组,对于任意一组实数,则称为向量组的一个线性组合,称为这个线性组合的组合系数.定义给定向量组,和一个向量,若存在一组实数,使得,则称向量能由向量组线性表示.n=,a1na2n⋮asn2=,a12a22⋮as21=,a11... 2024-06-080287.93 KB6页
2024-06-080355.66 KB7页
2024-06-080193.16 KB7页
2024-06-080403.64 KB4页
2024-06-08048.53 MB21页
问题3.若向量组本身线性无关,则向量组的最大无关组是什么?性质1.向量组线性无关的充分必要条件是它所含的向量的个数等于它的秩.1=1002=,0103=001结论1.设I0:1,2,,r线性无关,则I0的最大无关组是其本身.例如,11中,01,10,3=1=2=2,3线性无关,1,2,3能由2,3线性表示,可见2,3也是1,2,3的一个最大无关组.1,2线性无关,1,2,3能由1,2线性表示,可见1,2是1,2,3的一个... 2024-06-080442.99 KB10页
2024-06-080348.52 KB7页