第1页通过LASSO回归压缩和选择RobertTibshirani加拿大多伦多大学【1994年1月收到,1995年1月修订】【摘要】本文提出一个线性模型估计的新方法。LASSO最小化残差平方和使得系数绝对值之和小于一个常数。由于此约束的性质倾向于产生一些为0的系数,从而给出了解释模型。我们的仿真研究表明,LASSO具有一些子集选择和岭回归的有利特性。它产生了例如子集选择的解释模型并展示了岭回归的稳定性。在最近的工作中关于多诺霍和约翰斯通...