1§4.2常系数线性微分方程的解法SolvingMethodofConstantCoefficientsLinearODE2§4.1内容回顾)1(0()()()11)(1()txatxaatxxnnnn解的性质与结构。方程(4.2)的一组n个线性无关解称为它的一个基本解组。♣n阶齐次线性方程的所有解构成一个n维线性空间。§4.1GeneralTheoryofHigher-OrderLinearODE3本节要求/Requirements/熟练掌握常系数齐次线性方程的求解方法熟练掌握常系数非齐次线性方程的求解方法熟...
§5.3CoefficientsLinearODEs5.3.3拉普拉斯变换的应用0tdtetLsst()()][()ffF这里f(t)是n维向量函数,要求它的每一个分量定义都存在拉普拉斯变换。§5.3CoefficientsLinearODEs00和M使不等式Mettf)(ηxfAxx)0(),(t的解(t)(t)如果对向量函数f(t),存在常数定理12对所有充分大的t成立,则初值问题及其导数(5.62)的不等式从而它们的拉普拉斯变换都存在。(5.62)均象f(t)一样满足类似§5.3Coeffici...
§5.3常系数线性微分方程组CoefficientsLinearODEs§5.3CoefficientsLinearODEs1常系数齐线性微分方程组xAx的基解矩阵的结构,这里A是常数矩阵。nn2通过代数的方法,寻求(5.33)的一个基解矩阵。(5.33)3拉普拉斯变换在常系数线性微分方程组中的应用。本节主要内容/MainContents/§5.3CoefficientsLinearODEs5.3.1矩阵指数expA的定义和性质无穷矩阵级数121kkkAAAAnnkijnnijnnijaaa...
4.2.3非齐次线性方程解法------比较系数法与拉普拉斯变换法[x]LdtdDnnnnaDaaDDL111,),2,1(naii(t)f令L为线性微分算子。为常数,为连续函数。)(.()4321111ftaxdtdxadtxaddtxdnnnnnn§4.2SolvingMethodofConstantCoefficientsLinearODE[x]0L0)(11nnnaaF基本解组或通解()[]ftLx常数变易法特解相加比较系数法与拉普拉斯变换法§4.2SolvingMethodofConstantCoeff...
若0dttestf)(F(s)0dttestf)((t)f)[,0(t)f()[()]FsLft(二)拉普拉斯变换法/LaplaceTransform/附录1拉普拉斯变换§1拉普拉斯变换定义/DefinitionofLaplaceTransform/对于在上有定义的函数对于已给的一些(一般为复数)存在,则称s为函数的拉普拉斯变换,记为TstTdttfe0()limf(t)称为LaplaceTransform的原函数,F(s)称为f(t)的象函数.拉普拉斯变换法存在性/ExistenceofLaplaceTransform/是分...
1§4.2常系数线性微分方程的解法SolvingMethodofConstantCoefficientsLinearODE2§4.1内容回顾)1(0()()()11)(1()txatxaatxxnnnn解的性质与结构。方程(4.2)的一组n个线性无关解称为它的一个基本解组。♣n阶齐次线性方程的所有解构成一个n维线性空间。§4.1GeneralTheoryofHigher-OrderLinearODE3本节要求/Requirements/熟练掌握常系数齐次线性方程的求解方法熟练掌握常系数非齐次线性方程的求解方法熟...