CASESTUDYAComparativeStudyof2DPCAFaceRecognitionMethodwithOtherStatisticallyBasedFaceRecognitionMethodsRSenthilkumar1•RKGnanamurthy2Received:17February2014/Accepted:12June2015/Publishedonline:29July2015�TheInstitutionofEngineers(India)2015AbstractInthispaper,two-dimensionalprincipalcom-ponentanalysis(2DPCA)iscomparedwithotheralgo-rithmslike1DPCA,Fisherdiscriminantanalysis(FDA),independentcomp...
ISRAELJOURNALOFMATHEMATICS243(2021),233–272DOI:10.1007/s11856-021-2159-4ONTHEPRODUCTOFTHESINGULARVALUESOFABINARYTENSORBYLucaSodomacoDepartmentofMathematicsandSystemsAnalysisAaltoUniversity,,FI-00076Espoo,Finlande-mail:luca.sodomaco@aalto.fiABSTRACTArealbinarytensorconsistsof2drealentriesarrangedintohypercubeformat2×d.Ford=2,arealbinarytensorisa2×2matrixwithtwosingularvalues.Theirproductisthe...
SCIENCECHINAInformationSciencesFebruary2020,Vol.63129203:1–129203:3https://doi.org/10.1007/s11432-018-9739-9c⃝ScienceChinaPressandSpringer-VerlagGmbHGermany,partofSpringerNature2019info.scichina.comlink.springer.com.LETTER.Threematrixconditionsforthereductionoffiniteautomatabasedonthetheoryofsemi-tensorproductofmatricesJumeiYUE1,YongyiYAN2*ZengqiangCHEN31CollegeofAgriculturalEngineering,Henan...
Vol.:(0123456789)NeuralProcessingLetters(2022)54:347–368https://doi.org/10.1007/s11063-021-10632-513PCADimensionalityReductionMethodforImageClassificationBaitingZhao1XiaoDong1YongcunGuo2,3XiaofenJia1,2YouruiHuang1Accepted:20August2021/Publishedonline:27October2021©TheAuthor(s),underexclusivelicencetoSpringerScience+BusinessMedia,LLC,partofSpringerNature2021AbstractThepoolinglayerhasachievedgo...
ActaMathematicaeApplicataeSinica,EnglishSeriesVol.19,No.2(2003)219–228OnSemi-tensorProductofMatricesandItsApplicationsDai-zhanCheng1,Li-junZhang2InstituteofSystemsScience,AcademyofMathematicsandSystemSciences,ChineseAcademyofSciences,Beijing100080,P.R.China(E-mail:1dcheng@iss03.iss.ac.cn;2zhanglj@amss.ac.cn)AbstractTheleftsemi-tensorproductofmatriceswasproposedin[2].Inthispapertherightsemi-ten...
ORIGINALARTICLEPoseinvariantfacerecognitionbasedonhybrid-globallinearregressionAbhishekSharma•AnamikaDubey•A.N.Jagannatha•R.S.AnandReceived:24May2009/Accepted:30March2010/Publishedonline:12May2010�Springer-VerlagLondonLimited2010AbstractThepaperpresentsasimplebutefficientnovelH-eigenface(Hybrid-eigenface)methodforposeinvariantfacerecognitionrangingfromfrontaltoprofileview.H-eigenfacesareent...
Adv.Appl.CliffordAlgebras24(2014),805–807©2014SpringerBasel0188-7009/030805-3publishedonlineFebruary16,2014DOI10.1007/s00006-014-0455-3OntheDeterminant-likeFunctionandtheVectorDeterminantAbhimanyuPallaviSudhirAbstract.Ageneralisationofthedeterminanttorectangularmatrices,knownasthedeterminant-likefunction,hasitsmagnitudedefinedpre-viously.Inthispaper,weshowthatthedeterminant-likefunctionisarot...
VisComput(2014)30:359–386DOI10.1007/s00371-013-0861-xORIGINALARTICLELow-resolutionfacerecognition:areviewPublishedonline:6August2013©Springer-VerlagBerlinHeidelberg2013AbstractLow-resolutionfacerecognition(LRFR)aimstorecognizefacesfromsmallsizeorpoorqualityimageswithvaryingpose,illumination,expression,etc.Ithasreceivedmuchattentionwithincreasingdemandsforlongdistancesurveillanceapplications,a...
METHODOLOGIESANDAPPLICATIONEffectivedimensionalityreductionbyusingsoftcomputingmethodindataminingtechniquesA.Radhika1•M.SyedMasood1Publishedonline:3January2021�Springer-VerlagGmbHGermany,partofSpringerNature2021AbstractApparently,therehasbeenabundantofdatagenerationandtransfergoingonoveradailybasis.Thisdatacaneitherbestatic,dynamicortransactionalinnature.Thereisfrequentappendingofnewdatatothe...
https://doi.org/10.1007/s10489-022-03165-4DimensionalityreductionalgorithmoftensordatabasedonorthogonaltuckerdecompositionandlocaldiscriminationdifferenceWenxuGao1ZhengmingMa1XuejingYuan1Accepted:29December2021©TheAuthor(s),underexclusivelicencetoSpringerScience+BusinessMedia,LLC,partofSpringerNature2022AbstractDimensionalityReduction(DR)isasignificantsubjectwhichhavearousedextensiveattentiono...
北京大学2017年硕士研究生招生考试试题(启封并使用完毕前按国家机密级事项管理)考试科目:数学基础考试2(高等代数与解析几何)考试时间:2016年12月25日下午专业:数学学院各专业(除金融学和应用统计专业)方向:数学学院各方向(除金融学和应用统计方向)————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效.1.(15分)设x1=x2...
2014c�®“‰ŒÆê‰�ê©p“ÁKë•)‰(((²²²1.2014c�ÁK´•�ÓÆ£Á�,ÁKØ��.2.ŠöØéd©��)‰��(5Š?Û«ì,•ØéϦ^�©�E¤�›”K?ÛI?.3.Ø�ò�©�^uØÆS±��?Û^å.4.gC‰�â´gC�.ž˜½gC@ýk‰.1ÁÁÁKKKÜÜÜ©©©1.1ppp���“““êêêÜÜÜ©©©65©©©1.(15’).ê•Fþ�õ‘ªf(x)ØŒ�§y²µf(x)3Eê•Svk-Š.2.(20’).f˜mV1dα1=()′§α2=()′)¤§V2dβ1=()′...
2014c�®“‰ŒÆê‰�ê©p“ÁKë•)‰(((²²²1.2014c�ÁK´•�ÓÆ£Á�,ÁKØ��.2.ŠöØéd©��)‰��(5Š?Û«ì,•ØéϦ^�©�E¤�›”K?ÛI?.3.Ø�ò�©�^uØÆS±��?Û^å.4.gC‰�â´gC�.ž˜½gC@ýk‰.1ÁÁÁKKKÜÜÜ©©©1.1ppp���“““êêêÜÜÜ©©©65©©©1.(15’).ê•Fþ�õ‘ªf(x)ØŒ�§y²µf(x)3Eê•Svk-Š.2.(20’).f˜mV1dα1=()′§α2=()′)¤§V2dβ1=()′...
2014c�®“‰ŒÆê‰�ê©p“ÁKë•)‰(((²²²1.2014c�ÁK´•�ÓÆ£Á�,ÁKØ��.2.ŠöØéd©��)‰��(5Š?Û«ì,•ØéϦ^�©�E¤�›”K?ÛI?.3.Ø�ò�©�^uØÆS±��?Û^å.4.gC‰�â´gC�.ž˜½gC@ýk‰.1ÁÁÁKKKÜÜÜ©©©1.1ppp���“““êêêÜÜÜ©©©65©©©1.(15’).ê•Fþ�õ‘ªf(x)ØŒ�§y²µf(x)3Eê•Svk-Š.2.(20’).f˜mV1dα1=()′§α2=()′)¤§V2dβ1=()′...
2014c�®“‰ŒÆê‰�ê©p“•ïýK(£Á‡)1ppp���“““êêêÜÜÜ©©©65©©©1.(15’).ê•Fþ�õ‘ªf(x)ØŒ�§y²µf(x)3Eê•Svk-Š.2.(20’).f˜mV1dα1=()′§α2=()′)¤§V2dβ1=()′§β2=()′)¤¦V1+V2§V1∩V2�ÄÚ‘ê3.(15’).(1)(5’).�yV‚5šòz¼ê¶(2)(5’).Hom(V,V)→Hom(V,V)∗Ó�¶(3)(5’).lV3Ó�e�”4.(15’).S=(aij)n×n´˜‡‘ÅÝ�§÷ve�^‡µ(i)0⩽aij,∀i,j;(ii)ai1+a...
北京师范大学2013年数学分析与高等代数试题(回忆版)高等代数部分(65分)1,(15’)叙述并证明克莱姆法则。2,(15’)设f(x)和g(x)是F[x]中的多项式,a,b,c,d∈F,如果ad−bc�0,那么(f(x),g(x))=(af(x)+bg(x),cf(x)+dg(x))3,(20’)V是R上的有限维线性空间,V1,V2是V的两个子空间。证明:dim(V1+V2)=dim(V1)+dim(V2)−dim(V1∩V2)4,(15’)A是n阶方阵,证明:存在矩阵B,Cs.t.A=BC其中B可逆且C=C2.数学分析部分(85分)5,(15’)求f(x,y)=(x...
2007年北京师范大学数学分析与高等代数试题参考解答说明:1,水平有限错误在所难免,还请大家批评指正2,Latex不太熟悉,好多不会用,编辑的不太美观,见谅。1,(15’)求下列极限。(1),limn→+∞(1+x+αnn)n其中limn→+∞αn=0.解,原式=limn→+∞(1+xn+o(1n))n=ex(2),limn→+∞1+√2++n√nn.解,原式=limn→+∞n√nn−(n−1)=1.2,(15’)将平面直角坐标系下的Laplace方程∂2u∂x2+∂2u∂y2=0化为平面极坐标下的方程.解,x=rcosθ...
09年北京师范大学数学考研真题专业综合一(数分,高代)1.求D为2.把化为累次积分为连续函数,V为四面体:3.求4.f(x)处处有导数,求证:的间断点如果有的话,一定是第二类间断点.5.为实数列,,,已知级数收敛,求证收敛.6.求证(1):(2)7.已知f(x)连续,,求证:f(x)黎曼可积.8.设A为矩阵,一定存在一个矩阵B,使的充要条件是秩(A)=m.9.A是三阶实矩阵,秩(A)=2,它的二重特征值为,属于的特征值分别为,求矩阵A.10.已知为对称变换,V是一个空间,W为V...