1.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.例.如图所示,有一正方体纸盒,在点C1处有一只小虫,它要爬到点A吃食物.应该沿着...
翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x...
翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x...
1.如图所示为一块含有30°角的三角板,则∠A=______°,∠B=_______°,∠C=_____°。2.如图所示为一块含有45°角的三角板,则∠A=______°,∠B=_______°,∠C=_____°。方法点睛我们知道一副三角板是由一块含有锐角分别为30°,60°的直角三角板和另一块含有两个锐角45°的等腰直角三角板组成,它们提供了较为直观的30°,45°,60°以及90°,此外这些角度还可以进行一些拼凑。依据平行线的性质,我们可以得到同位角、内...
1.如图所示为一块含有30°角的三角板,则∠A=______°,∠B=_______°,∠C=_____°。2.如图所示为一块含有45°角的三角板,则∠A=______°,∠B=_______°,∠C=_____°。方法点睛我们知道一副三角板是由一块含有锐角分别为30°,60°的直角三角板和另一块含有两个锐角45°的等腰直角三角板组成,它们提供了较为直观的30°,45°,60°以及90°,此外这些角度还可以进行一些拼凑。依据平行线的性质,我们可以得到同位角、内...
4321DACBM模型一、角平分线垂两边模型二、角平分线垂中间模型三、角平分线+平行线构造等腰三角形模型四、利用角平分线作对称模型五、内外模型考点一:角平分线垂两边模型模型介绍例题精讲【例1】.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是.变式训练【变式1-1】.如图,已知:∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)AD=AB+CD.【...
4321DACBM模型一、角平分线垂两边模型二、角平分线垂中间模型三、角平分线+平行线构造等腰三角形模型四、利用角平分线作对称模型五、内外模型考点一:角平分线垂两边模型模型介绍例题精讲【例1】.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是30.解:过点D作DE⊥BA的延长线于点E,如图所示. BD平分∠ABC,∴DE=DC=4,∴S四边形ABCD=S△ABD+S△BCD,=AB•DE+BC•CD,...
有关中点的知识点归纳:①三角形中线平分三角形面积;②直角三角形斜边上的中线等于斜边的一半;③等腰三角形“三线合一”的性质;④三角形中位线平行且等于第三边的一半.在题干中,出现一个中点时,我们通常想到中线;两个中点时,想到中位线。模型一、双中点-中位线模型如图,D、E、F分别为△ABC三边中点,连接DE、DF、EF,则,,.模型二、单中点-倍长中线模型模型二、单中点-“三线合一”模型如图,在△ABC中,AB=AC,D为BC...
有关中点的知识点归纳:①三角形中线平分三角形面积;②直角三角形斜边上的中线等于斜边的一半;③等腰三角形“三线合一”的性质;④三角形中位线平行且等于第三边的一半.在题干中,出现一个中点时,我们通常想到中线;两个中点时,想到中位线。模型一、双中点-中位线模型如图,D、E、F分别为△ABC三边中点,连接DE、DF、EF,则,,.模型二、单中点-倍长中线模型模型二、单中点-“三线合一”模型如图,在△ABC中,AB=AC,D为BC...
对角互补模型:即四边形或多边形构成的几何图形中,相对的角互补。主要分为含90°与120°的两种对角互补类型。该题型常用到的辅助线主要是顶定点向两边做垂线,从而证明两个三角形全等或者相似.模型一、含90°的全等型1.如图,已知∠AOB=∠DCE=90º,OC平分∠AOB.则可以得到如下几个结论:①CD=CE,②OD+OE=OC,③.2.如图,已知∠DCE的一边与AO的延长线交于点D,∠AOB=∠DCE=90º,OC平分∠AOB.则可得到如下几个结论:①...
对角互补模型:即四边形或多边形构成的几何图形中,相对的角互补。主要分为含90°与120°的两种对角互补类型。该题型常用到的辅助线主要是顶定点向两边做垂线,从而证明两个三角形全等或者相似.模型一、含90°的全等型1.如图,已知∠AOB=∠DCE=90º,OC平分∠AOB.则可以得到如下几个结论:①CD=CE,②OD+OE=OC,③.2.如图,已知∠DCE的一边与AO的延长线交于点D,∠AOB=∠DCE=90º,OC平分∠AOB.则可得到如下几个结论:①...
中点四边形模型(1)任意四边形四条边的中点依次连接得到的四边形一定是平行四边形.(2)矩形四条边中点连线所得到的四边形为菱形.(3)菱形四条边中点连线所得到的四边形为矩形.梯形中位线定理(1)中位线定义:连接梯形两腰中点的线段叫做梯形的中位线.(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.(3)梯形面积与中位线的关系:梯形中位线的2倍乘高再除以2就等于梯形的面积,即梯形的面积=×...
中点四边形模型(1)任意四边形四条边的中点依次连接得到的四边形一定是平行四边形.(2)矩形四条边中点连线所得到的四边形为菱形.(3)菱形四条边中点连线所得到的四边形为矩形.梯形中位线定理(1)中位线定义:连接梯形两腰中点的线段叫做梯形的中位线.(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.(3)梯形面积与中位线的关系:梯形中位线的2倍乘高再除以2就等于梯形的面积,即梯形的面积=×...
结论:对角线互相垂直的四边形叫做“垂美”四边形,如图所示则有:AB2+CD2=AD2+BC2【证明】 AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2方法点拨①对角线垂直的四边形对边的平方和相等;②已知三边求一边的四边形,可以联想到垂美四边形模型介绍【例1】.如图,在四边形ABCD中,AC⊥BD,若AB=5,AD=5,CD=12,则BC=.变式...
结论:对角线互相垂直的四边形叫做“垂美”四边形,如图所示则有:AB2+CD2=AD2+BC2【证明】 AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2方法点拨①对角线垂直的四边形对边的平方和相等;②已知三边求一边的四边形,可以联想到垂美四边形模型介绍【例1】.如图,在四边形ABCD中,AC⊥BD,若AB=5,AD=5,CD=12,则BC=13.解:...
定角定高模型:如图,直线BC外一点A,A到直线BC距离为定值(定高),∠BAC为定角,则AD有最小值,即△ABC的面积有最小值.定角夹定高也叫探照灯模型.模型剖析如何确定△ABC面积的最小值呢?首先我们连接OA,OB,OC.过O点作OH⊥BC于H点.(如右上图)显然OA+OH¿AD,当且仅当A,O,D三点共线时取“=”.由于∠BAC的大小是一个定值,而且它是圆O的圆周角,因此它所对的圆心角∠AOB的度数,也是一个定值.因此OH和圆O的半径有一个固定关...
定角定高模型:如图,直线BC外一点A,A到直线BC距离为定值(定高),∠BAC为定角,则AD有最小值,即△ABC的面积有最小值.定角夹定高也叫探照灯模型.R模型剖析如何确定△ABC面积的最小值呢?首先我们连接OA,OB,OC.过O点作OH⊥BC于H点.(如右上图)显然OA+OHAD,当且仅当A,O,D三点共线时取“=”.由于∠BAC的大小是一个定值,而且它是圆O的圆周角,因此它所对的圆心角∠AOB的度数,也是一个定值.因此OH和圆O的半径有一个固定关系,...
【点睛1】触发隐圆模型的条件(1)动点定长模型若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长(2)直角圆周角模型固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角(3)定弦定角模型固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等则点P运动轨迹为过A、B...
R【点睛1】触发隐圆模型的条件(1)动点定长模型若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长(2)直角圆周角模型固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角(3)定弦定角模型固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等则点P运动轨迹为过A、B...
平面内一定的D和O上动点M的连线中,当连线过圆心O时,线段DM有最大值和最小值。分以下情况讨论:(设OD=d,O的半径为r)点D在O外时,d>r,如图:①当D、M、O三点共线时,线段DM出现最值,DM的最大值为d+r,DM的最小值为d-r;②当点D在O上时,d=r,如图:当D、O、M三点共线时,线段DM有最值;DM最大值为d+r,DM最小值为d-r=0(即点D与点M重合)③当点D在O内时,d<r,如图当点D、O、M三点共线时,DM有最值;DM最大值为d...