标签“矩形”的相关文档,共67条
  • JJF(京) 144-2024 基于金属矩形波导的石墨烯材料吸波和屏蔽效能规范

    JJF(京) 144-2024 基于金属矩形波导的石墨烯材料吸波和屏蔽效能规范VIP

    学兔兔www.bzfxw.com标准下载北京市地方计量技术规范JJF(京)144─2024基于金属矩形波导的石墨烯材料吸波和屏蔽效能校准规范CalibrationSpecificationforAbsorbingandShieldingEffectivenessofGrapheneBasedonMetalRectangularWaveguide2024-05-16发布2024-07-01实施北京市市场监督管理局发布学兔兔www.bzfxw.com标准下载JJF(京)144-2024JJF(京)144-2024归口单位:北京市市场监督管理局主要起草单位:北京市计量检测科学研究院...

    2024-07-100956.72 KB0
  • 专题16 平行四边形、矩形、菱形、正方形(第03期)-2016年中考数学必备之微测试(北师大版)(原卷版)

    专题16 平行四边形、矩形、菱形、正方形(第03期)-2016年中考数学必备之微测试(北师大版)(原卷版)

    1专题16平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【2015资阳】若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形2.【2015南充】如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为()A.1:2B.1:3C.1:D.1:3.【2015内江】如图所示,...

    2024-06-1901.45 MB0
  • 专题16 平行四边形、矩形、菱形、正方形(第03期)-2016年中考数学必备之微测试(北师大版)(解析版)

    专题16 平行四边形、矩形、菱形、正方形(第03期)-2016年中考数学必备之微测试(北师大版)(解析版)

    1学校:___________姓名:___________班级:___________一、选择题:(共4个小题)[来源:Zxxk.Com]1.【2015资阳】若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【答案】D.【解析】【考点定位】中点四边形.2.【2015南充】如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为()汇聚名校名师,奉献精品资源,...

    2024-06-1901.97 MB0
  • 【课件】18.2.1矩形第2课时矩形的判定

    【课件】18.2.1矩形第2课时矩形的判定

    第六章特殊平行四边形2矩形的判定矩形的定义有一个角是直角的平行四边形叫做矩形一个角是直角矩形的性质对称性边角对角线矩形的对角线互相平分且相等矩形的对边平行且相等矩形的四个角是直角矩形是轴对称图形也是中心对称图形回顾:判定方法1:(定义法)有一个角是直角的平行四边形叫做矩形练习1:如图,□ABCD中,AB=6,BC=8,AC=10。求证:四边形ABCD是矩形矩形的定义有一个角是直角的平行四边形叫做矩形一个角是直角矩形...

    2024-05-0802.87 MB0
  • 初二数学菱形、矩形复习题含答案

    初二数学菱形、矩形复习题含答案

    初二数学菱形、矩形复习题含答案

    2024-05-05016.35 MB0
  • 2013中考数学压轴题矩形问题精选解析一

    2013中考数学压轴题矩形问题精选解析一

    2013中考数学压轴题矩形问题精选解析(一)例1.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落...

    2024-04-300179 KB0
  • 矩形性质及判定练习题

    矩形性质及判定练习题

    矩形性质及判定练习题1、矩形的一个角的平分线分矩形的一边为1cm和3cm的两部分,则这个矩形的面积为()2、矩形的周长为56cm,对角线AC和BD交于点O,△AOB与△BOC的周长之差是4cm,则矩形中较短的边为()4、如图,在矩形ABCD中,E、F是对角线AC的三等分点,AB=8,AC=10,则△BEF的面积5、如图,O为矩形ABCD的对角线的交点,DF平分∠ADC交AC于点E,叫BC于点F,∠BDF=150,求∠COF的度数=()1、矩形具有而平行四边形不一定具有的...

    2024-04-29060.53 KB0
  • 与矩形有关的折叠问题

    矩形有关的折叠问题

    矩形相关的折叠问题在矩形的性质及判定的应用过程中,折叠类的题目是比较多见的,同时也是矩形和角平分线、勾股定理等知识的结合与拓展。折叠是轴对称的另一种描述,因此,在折叠问题中找到折痕即对称轴就是解决此类问题的一个突破口。下面从几个不同的层面展示一下。例1、将一长方形纸片按如图的方式折叠,BC、BD为折痕,则∠CBD的度数为().(A)60°(B)75°(C)90°(D)95°分析:在这个问题中是利用折叠矩形的两个角给大家提...

    2024-04-290515 KB0
  • 专题19平行四边形、矩形、菱形拔高题

    专题19平行四边形、矩形、菱形拔高题

    专题19平行四边形、矩形、菱形阅读与思考平行四边形、矩形、菱形的性质定理与判定定理是从对边、对角、对角线三个方面探讨的,矩形、菱形都是特殊的平行四边形,矩形的特殊性由一个直角所体现,菱形的特殊性是由邻边相等来体现,因此它们除兼有平行四边形的一般性质外,还有特有的性质;反过来,判定一个四边形为矩形或菱形,也就需要更多的条件.连对角线后平行四边形、矩形、菱形就与特殊三角形联系在一起,所以讨论平行四边形...

    2024-04-290549.5 KB0
  • 矩形沉井计算工作井[1页]

    矩形沉井计算工作井[1页]

    6500x4000矩形沉井结构计算书第1+10页,共17页矩形沉井计算★工程概况土层编号层厚摩阻力极限承载力内摩擦角容重备注加权摩阻fki*hi2.0010.00150.008.6018.0010.0020.0016.0010.00200.0015.4018.50160.000.000.00∑hi18.00∑fki*hi180.00节段编号6.006.004.000.503.001650660105025.006.004.000.500.0013750035.006.004.000.500.0013750000044006601050★沉井下沉系数计算节段编号备注6.0024.001440.00采用泥浆2.005.0024.00600...

    2024-04-280369.5 KB0
  • 矩形脉冲信号频谱分析[共7页]

    矩形脉冲信号频谱分析[共7页]

    小组成员:刘鑫龙宇秦元成王帅薛冬寒梁琼健一、傅里叶分析方法与过程周期信号的分解1、三角形式周期为T的周期信号,满足狄里赫利(Dirichlet)条件(实际中遇到的所有周期信号都符合该条件),便可以展开为傅里叶级数的三角形式,即:110sincos21)(nnnnntbtnaatf(1)(2)22,2,1()sin2TTntdtnftTbn(3)式中:为基波频率,与为傅里叶系数。其中na为n的偶函数,nb为n的奇函数。将上式中同频率...

    2024-04-270179.55 KB0
  • 华东师大版八下数学第19章矩形,菱形和正方形19.1《矩形的性质》教学设计

    华东师大版八下数学第19章矩形,菱形和正方形19.1《矩形的性质》教学设计

    ?矩形的性质?教案学习目标:1、掌握矩形的定义和性质.2、经历矩形性质的探究过程.3、能利用矩形的性质解决问题.4、经历矩形特性的猜测与证明过程,培养学生独立思考、善于合作、大胆猜测、勇于探索的思维品质和学习习惯,感受从一般到特殊及类比的学习方法,体会转化的数学思想。学习重点:矩形性质及其应用学习难点:矩形性质的应用学习方法:自学与小组合作学习相结合的方法教学过程:一、忆一忆复习回忆平行四边形性质边:对边平...

    2024-04-26041.26 KB0
  • 人教版八年级数学下册 18.2 矩形 综合练习

    人教版八年级数学下册 18.2 矩形 综合练习

    ABCEDOBCDEAOCPAEBFM矩形1.矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2.平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3.以下关于矩形的说法中正确的选项是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形4.以下说法正确...

    2024-04-23067.35 KB0
  • 人教版八年级数学下册 18.2  矩形(基础)同步练习 (无答案)

    人教版八年级数学下册 18.2 矩形(基础)同步练习 (无答案)

    矩形1.如图,矩形ABCD中,对角线AC、BD相交于点O,那么以下结论不正确的选项是()A.AC⊥BDB.AC=BDC.BO=DOD.AO=CO2.以下四边形对角线相等但不一定垂直的是()A.平行四边形B.矩形C.菱形D.正方形3.如图矩形ABCD中,对角线AC、BD相交于点O,∠AOD=60°,AD=2那么AC的长是()A.2B.4C.2√3D.4√34.在Rt△ABC中,CD是斜边AB边的中线,假设AB=8,那么CD的长是()A.6B.5C.4D.35.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法...

    2024-04-23053.11 KB0
  • 人教版八年级数学下册 18.2 矩形 提高 练习(无答案)

    人教版八年级数学下册 18.2 矩形 提高 练习(无答案)

    矩形的性质1.如图,在矩形ABCD中,对角线AC,BD相交于点O,如果∠AOD=120°,AB=2,那么BC的长为()A.4B.3C.23D.252.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,那么△ABO的周长为()A.12B.16C.20D.243.如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影局部的面积()cm2.A.72B.90C.108D.1444.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,那么这个矩形的一条...

    2024-04-23041.68 KB0
  • 人教版八年级数学下册 18.2 矩形 综合练习 (2)

    人教版八年级数学下册 18.2 矩形 综合练习 (2)

    ABCEDOBCDEAOCPAEBFM矩形1.矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2.平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3.以下关于矩形的说法中正确的选项是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形4.以下说法正确...

    2024-04-23065.61 KB0
  • 矩形专题训练[共4页]

    矩形专题训练[共4页]

    矩形专题培优训练1.下列条件中,不能判定四边形ABCD为矩形的是().A.AB∥CD,AB=CD,AC=BDB.∠A=∠B=∠D=90°C.AB=BC,AD=CD,且∠C=90°D.AB=CD,AD=BC,∠A=90°2.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°3.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,若CD=6,则AF等于()A.B.C.D.84.如图,矩形ABCD沿AE...

    2024-04-230123 KB0
  • 特殊的平行四边形(第一课时矩形)

    特殊的平行四边形(第一课时矩形

    19.219.2特殊的平行四边形特殊的平行四边形19.2.119.2.1矩形矩形1、探究矩形的定义,掌握矩形的性质与判定定理的证明与应用。2、灵活的运用矩形的性质与判定定理解决相关的实际问题与证明。矩形的定义:有一个角是直角的平行四边形是矩形.矩形的性质:定理1:矩形的四个角都是直角.定理2:矩形的对角线相等.推论:在直角形中斜边的中线长等于斜边长的一半。矩形的判定:定理1:有三个角是直角四边形是矩形。定理2:对角线相等...

    2024-04-230793.5 KB0
  • 计算机视觉程设计基于矩形物体的旋转角度测量1

    计算机视觉程设计基于矩形物体的旋转角度测量1

    蔑山大学课程设计说明书题目:基于矩形物体的旋转角度测量学院(系)电气工程学院年级专业:一学号:13010302001301030200学生姓名:_指导教师:教师职称:讲师燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:仪器科学与工程系学号学生姓名专业(班级)设计题目9基千矩形物体的旋转角度测昼设计技术参数根据图像处理的知识,确定图像中矩形物体的旋转角度,尽昼使用较多的方法实现,并且比较每种方法的处...

    2024-04-230288.79 KB0
  • 北师大九年级(上)第一章:矩形与正方形能力提升训练(无答案)

    北师大九年级(上)第一章:矩形与正方形能力提升训练(无答案)

    矩形与正方形【典例精讲】考点1:矩形的性质及判定【例1】如右图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连结BM、DN,假设四边形MBND是菱形,那么的值等于〔〕A、B、C、D、◎变式疯测◎No.1如右图,在矩形ABCD中,P是AD上任一点,PQ⊥AC于点Q,PR⊥BD于点R,DT⊥AC于点T,求证:PQ+PR=DT.No.2如以下图:在△ABC中,点O是AC边上的一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.〔1〕求证:EO=FO;〔...

    2024-04-22069.48 KB0
确认删除?
关注送VIP
  • 抖音扫码 私发账号
批量上传
意见反馈
上传者群
  • 上传QQ群点击这里加入QQ群
在线客服
  • 客服QQ点击这里给我发消息
回到顶部