专题10基本初等函数(知识梳理)一、指数与指数函数(一)指数式的化简与求值1、化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;④注意运算的先后顺序。提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算。2、结果要求:①题目以根式形式给出,则结果用根式表示;②题目以分数指数幂形式给出,则结果用分数指数幂形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负...
专题04圆锥曲线与方程(知识梳理)一、曲线和方程的定义1、一般地,在平面直角坐标系中,如果某曲线上的点与一个二元方程的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解。(2)以这个方程的解为坐标的点都是曲线上的点。那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线。2、“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可。(1)“曲线上的点的坐标都是方程的解”,即纯粹性。(2)...
专题34不等式(知识梳理)一、不等式的有关概念1、不等式的定义:用数学符号“、、、、”连接的两个数或代数式表示不等关系的式子叫不等式。不等式的定义所含的两个要点:(1)不等符号、、、或;(2)所表示的关系是不等关系。2、不等式的含义:不等式应读作“大于或者等于”,其含义是指“或者,或者”,等价于“不小于,即若或之中有一个正确,则正确。不等式中的文字语言与符号语言之间的转换:大于大于等于小于小于等于至少至多不少...
专题10基本初等函数(知识梳理)一、指数与指数函数(一)指数式的化简与求值1、化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;④注意运算的先后顺序。提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算。2、结果要求:①题目以根式形式给出,则结果用根式表示;②题目以分数指数幂形式给出,则结果用分数指数幂形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负...
专题37空间几何体(知识梳理)一、空间几何体1、空间几何体的基本定义如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。围成体的各个平面图形叫做体的面;相邻两个面的大众边叫做体的棱;棱和棱的大众点叫做体的顶点。几何体不是实实在在的物体。平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。例1-1.下列是几何体的是()。A、方砖B、足球C、圆...
专题08空间向量与立体几何(知识梳理)用向量法证明平行或垂直一、知识储备1、空间向量的坐标运算:设,:(1);(2);(3);(4)=,=,=();(5)=++=;(6)模长公式:若,则;(7)夹角公式:(8)两点间的距离公式:若,,则:;2、平面的法向量(1)定义:如图,直线,取直线的方向向量,则向量叫做平面的法向量。给定一点和一个向量,那么过点,以向量为法向量的平面是完全确定的。(2)平面法向量的求法:求平面法向量的步骤:①设出平面的法向量为...
专题10基本初等函数(知识梳理)一、指数与指数函数(一)指数式的化简与求值1、化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;④注意运算的先后顺序。提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算。2、结果要求:①题目以根式形式给出,则结果用根式表示;②题目以分数指数幂形式给出,则结果用分数指数幂形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负...
专题21解三角形(知识梳理)一、知识点1、正弦定理:。(其中为的外接圆的半径)正弦定理的变形公式:①,,;②,,;③;④;2、三角形面积定理:;;(其中为的内切圆的半径)3、余弦定理:;;;4、射影定理:,,5、设、、是的角、、的对边,则:①若,则;②若,则;③若,则。6、三角形解的个数的讨论为锐角为钝角或直角或两解一解无解一解无解7、解三角形处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特...
专题34不等式(知识梳理)一、不等式的有关概念1、不等式的定义:用数学符号“、、、、”连接的两个数或代数式表示不等关系的式子叫不等式。不等式的定义所含的两个要点:(1)不等符号、、、或;(2)所表示的关系是不等关系。2、不等式的含义:不等式应读作“大于或者等于”,其含义是指“或者,或者”,等价于“不小于,即若或之中有一个正确,则正确。不等式中的文字语言与符号语言之间的转换:大于大于等于小于小于等于至少至多不少...
专题26平面向量(知识梳理)一、向量的概念及表示1、向量的概念:具有大小和方向的量称为向量。(没有位置、不能比较大小)(1)数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。(2)向量的表示方法:①具有方向的线段,叫做有向线段,以为始点,为终点的有向线段记作,的长度记作。用有向线段表示向量,读作向量;(有向线段的三要素:起点、方向、长度)②用小写字母表示...
1牌公司,主要业务范围是管理和处置不良资产。22001年10月《最高人民法院关于国有金融资产管理公司处置国[2001]156号)(至2006年2月28日废止)根据国有独资商业银行股份制改革的总体部署,将国有商业银行向AMC转让不良贷款和AMC受让不良贷款后的处置行为纳入上述规定。产管理公司收购、处置银行不良资产有关问题的补充通知(法〔2005〕62号)2000年11月财政部关于印发《金融资产管理公司资产处置管理3委托代理业务风险管理办法》...
专题37空间几何体(知识梳理)一、空间几何体1、空间几何体的基本定义如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。围成体的各个平面图形叫做体的面;相邻两个面的大众边叫做体的棱;棱和棱的大众点叫做体的顶点。几何体不是实实在在的物体。平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。例1-1.下列是几何体的是()。A、方砖B、足球C、圆...
2H)(直接原因、主要原因)作业,称为高温作业。由生产经营单位的决策机构、3建筑施工企业的法定代表人对本企业的安全生产负责。记忆口诀(313、151)4(一)矿山工程为2.5%;“树立隐患就是事故”的理念立即责令整改,依法实施责令5科教兴国6
专题13导数(知识梳理)一、基本概念1、导数定义:函数在处的瞬时变化率,我们称它为函数在处的导数,记作或,即。附注:①导数即为函数在处的瞬时变化率;②定义的变化形式:;;;,当时,,∴。③求函数在处的导数步骤:“一差;二比;三极限”。2、基本初等函数的八个必记导数公式原函数导函数原函数导函数(为常数)()(且)(且)3、导数四则运算法则(1);(2);(3)()。特别提示:,即常数与函数的积的导数,等于常数乘函数的导数。4、复...
专题18三角函数(知识梳理)一、知识点(一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。其中顶点,始边,终边称为角的三要素。角可以是任意大小的。(1)角按其旋转方向可分为:正角,零角,负角。①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。(2)在直角坐标系中讨论角:①角的...
专题37空间几何体(知识梳理)一、空间几何体1、空间几何体的基本定义如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。围成体的各个平面图形叫做体的面;相邻两个面的大众边叫做体的棱;棱和棱的大众点叫做体的顶点。几何体不是实实在在的物体。平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。例1-1.下列是几何体的是()。A、方砖B、足球C、圆...
专题21解三角形(知识梳理)一、知识点1、正弦定理:。(其中为的外接圆的半径)正弦定理的变形公式:①,,;②,,;③;④;2、三角形面积定理:;;(其中为的内切圆的半径)3、余弦定理:;;;4、射影定理:,,5、设、、是的角、、的对边,则:①若,则;②若,则;③若,则。6、三角形解的个数的讨论为锐角为钝角或直角或两解一解无解一解无解7、解三角形处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特...
专题34不等式(知识梳理)一、不等式的有关概念1、不等式的定义:用数学符号“、、、、”连接的两个数或代数式表示不等关系的式子叫不等式。不等式的定义所含的两个要点:(1)不等符号、、、或;(2)所表示的关系是不等关系。2、不等式的含义:不等式应读作“大于或者等于”,其含义是指“或者,或者”,等价于“不小于,即若或之中有一个正确,则正确。不等式中的文字语言与符号语言之间的转换:大于大于等于小于小于等于至少至多不少...
专题01空间向量与立体几何(知识梳理)一、知识储备1、空间向量的坐标运算:设,:(1);(2);(3);(4)=,=,=();(5)=++=;(6)模长公式:若,则;(7)夹角公式:(8)两点间的距离公式:若,,则:;2、平面的法向量(1)定义:如图,直线,取直线的方向向量,则向量叫做平面的法向量。给定一点和一个向量,那么过点,以向量为法向量的平面是完全确定的。(2)平面法向量的求法:求平面法向量的步骤:①设出平面的法向量为;②找出(求出)平面内的...
专题10基本初等函数(知识梳理)一、指数与指数函数(一)指数式的化简与求值1、化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;④注意运算的先后顺序。提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算。2、结果要求:①题目以根式形式给出,则结果用根式表示;②题目以分数指数幂形式给出,则结果用分数指数幂形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负...