标签“线性代数”的相关文档,共223条
  • (1.3.4)--2.1.4线性代数线性代数

    (1.3.4)--2.1.4线性代数线性代数

    LinearAlgebra(2credits)2.1.4TheTransposeofaMatrixandSymmetricMatrixForexample,8,54221A;825241TA6,B18.618TB1.TheTransposeofaMatrixThetransposeofanmatrixisthematrixdefinedbyforandmnAnmjiijba1,2,,jn1,2,,.imThetransposeofisdenotedbyAT.ARulesforTranspose;1AATT;2TTTBABA;3TTAA....

    2024-06-080192.32 KB0
  • (1.3.3)--2.1.3线性代数线性代数

    (1.3.3)--2.1.3线性代数线性代数

    LinearAlgebra(2credits)2.1.3MatrixMultiplication1.DefinitionIfisanmatrixandisanmatrix,thentheproductisanmatrixwhoseentriesaredefinedbyijAa11221sijijijissjikkjkcababababmsijBbsnijCABcmn(1,2,,;1,2,,)imjnEXAMPLEIf,compute415003112101A121113121430BAB.Thus...

    2024-06-080231.11 KB0
  • (1.3.2)--2.1.2线性代数线性代数

    (1.3.2)--2.1.2线性代数线性代数

    LinearAlgebra(2credits)2.1.2AdditionandScalarMultiplicationofMatricesDefinitionmnmnmmmmnnnnbababababababababaBA2211222222212111121211111.MatrixAdditionIfarebothmatrices,thenthesumisanmatrixasmn,ijijAaBbABmnNoteTwomatriceswiththesamedimensionscanbeaddedbyaddingtheircorrespondingentries.Forexample,...

    2024-06-080154.81 KB0
  • (1.3.1)--2.1.1线性代数线性代数

    (1.3.1)--2.1.1线性代数线性代数

    LinearAlgebra(2credits)2.1.1MatrixNotation11112211211222221122nnnnnnnnnnaxaxaxbaxaxaxbaxaxaxb1.SystemsoflinearequationsThesolutionsrelyon,1,2,,,aijijncoefficients1,2,,ibinconstants1.IntroductionofMatrixnnnnnnnbaaabaaabaaa21222221111211Tostudythepropertiesofalinearsys...

    2024-06-080301.52 KB0
  • (1.2.12)--英3.4.3 Transition matrix线性代数线性代数

    (1.2.12)--英3.4.3 Transition matrix线性代数线性代数

    3.4.3TransitionmatrixLinearAlgebraDefinitionIfandaretwobasesofthevectorspace,and𝑉.Denote𝑃thetransitionmatrixfrombasistobasis.basistransformationformula(𝛽1,𝛽2,⋯,𝛽𝑛)=(𝛼1,𝛼2,⋯,𝛼𝑛)𝑃ExampleThetransitionmatrixfrombasistobasisofis.(23−1−2)Solution:Giventhetransitionmatrix,𝑃(𝛼1,𝛼2)𝑃=(𝛽1,𝛽2).⇒𝑃=¿¿(110−1)−1(1112)¿(110−1)(1112)¿(23−1−2).ExampleSupposeProofthatisabasisofandf...

    2024-06-080311.67 KB0
  • (1.2.11)--英3.4.2 Basis ,Dimension and Coor线性代数线性代数

    (1.2.11)--英3.4.2 Basis ,Dimension and Coor线性代数线性代数

    3.4.2Basis,DimensionandCoordinatesofVectorSpaceLinearAlgebraDefinitionLetVbeavectorspace,islinearlyindependent;(2)AnyvectorinVcanbelinearlyrepresentedbyThevectorgroupiscalledabasisofthevectorspace,The𝑉numberofvectorsinabasisiscalledthedimensionofthevectorspace,andiscalleda𝑉𝑉r-dimensionalvectorspace.Stipulation:Thedimensionofthezerovectorspaceis0.1)Thebasisofisthelargestindependentgroupof,a...

    2024-06-080286.56 KB0
  • (1.2.10)--英3.4.1 Definition of Vector Spac线性代数线性代数

    (1.2.10)--英3.4.1 Definition of Vector Spac线性代数线性代数

    3.4.1TheDefinitionofVectorSpaceLinearAlgebraDefinition(VectorSpace)Avectorsetiscalledavectorspaceifithas𝑉thefollowingthreeproperties.Vectorsetisnotempty𝑉(closedundervectoraddition)Ifandbelongto,belongstoV𝑉(closedundervectoraddition)Ifbelongstoandisascalar,belongstoV𝑉2)Thedefinitionalsospecifiesstepstoverifywhetheravectorsetisavectorspace:①Visnotempty;②Visclosedundervectoraddition;③...

    2024-06-080329.21 KB0
  • (1.2.9)--英3.3.3 Calculation of the larges线性代数线性代数

    (1.2.9)--英3.3.3 Calculation of the larges线性代数线性代数

    LinearAlgebra3.3.3CalculationofthelargestIndependentgroupandRankofVectorGroupsExampleCalculatetherankandalargestindependentgroupofthefollowingvectorgroup:Solution:Method1Discriminatingthecorrelationofvectorgroups.𝛼3=𝛼1+2𝛼2.arelinearlydependentandarelinearlyindependent.𝛼1=(32−1−3−2),Thus,therankofthevectorgroupis2,andisalargestindependentgroupTheorem8TherankofmatrixAisequaltotherankofther...

    2024-06-080362.28 KB0
  • (1.2.8)--英3.3.2 Properties of the Largest线性代数线性代数

    (1.2.8)--英3.3.2 Properties of the Largest线性代数线性代数

    LinearAlgebra3.3.2PropertiesoftheLargestIndependentGroupsandRankQuestion3.Ifthevectorgroupitselfislinearlyindependent,whatisthelargestindependentgroupofthevectorgroup?Property1.AvectorgroupislinearindependentThenumberofvectorsitcontainsisequaltoitsrank.1=1002=,0103=001Conclusion1.I0:1,2,,rislinearlyindependent,thenthelargestindependentgroupofI0isitself.Forexample,in11,01,10,3=1=...

    2024-06-080471.4 KB0
  • (1.2.7)--英3.3.1 Definition of The Largest线性代数线性代数

    (1.2.7)--英3.3.1 Definition of The Largest线性代数线性代数

    LinearAlgebra3.3.1DefinitionofTheLargestIndependentGroupandRankofVectorGroupsR:255G:255B:0R:255G:0B:255R:0G:255B:2552550RedGreenBlue002552550002550Thepracticalmeaningofn-dimensionalvectorswhereVisiblecolorsinnaturecanbeobtainedbymixingprimarycolorswithcertainproportions,thatis,anycolorisregardedasalinearcombinationofred,greenandbluecolorvectors.Theprimarycolorsshouldbeindependenttoeachother,tha...

    2024-06-080272.09 KB0
  • (1.2.6)--英3.2.3 Properties of Linear 2线性代数线性代数

    (1.2.6)--英3.2.3 Properties of Linear 2线性代数线性代数

    LinearAlgebra3.2.2PropertiesofLinearCorrelationofVectorGroupsTheorem6VectorgroupA:islinearlydependent,ÛTherankofthematrixA=()<m(thenumberofvectors).VectorgroupA:islinearlyindependent,ÛTherankofthematrixA=()=m(thenumberofvectors).Note:1)Theconclusionalsoholdsfortherowvectorcase.ExampleDeterminethelinearcorrelationofvectorgroupSolution:LetObviously,usingTheorem6todeterminethecorrelationisverysi...

    2024-06-080443.75 KB0
  • (1.2.5)--英3.2.2 Correlation of Vector Gro线性代数线性代数

    (1.2.5)--英3.2.2 Correlation of Vector Gro线性代数线性代数

    LinearAlgebra3.2.2PropertiesofLinearCorrelationofVectorGroupsTheorem1VectorgroupA:islinearlydependentThereisatleastoneofthevectorsisalinearcombinationofother−1vectors.𝑚Proof(Sufficiency)Givenavectorin(suchas)thatcanbelinearlyrepresentedbytheremainingvectors,so𝛼𝑚=𝜆1𝛼1+𝜆2𝛼2+⋯+𝜆𝑚−1𝛼𝑚−1⇒𝜆1𝛼1+𝜆2𝛼2+⋯+𝜆𝑚−1𝛼𝑚−1+(−1)𝛼𝑚=𝑂Obviouslyarenotallzero,soislinearlydependent.Thatis...

    2024-06-080479.13 KB0
  • (1.2.4)--英3.2.1 Definition of Linear Depe线性代数线性代数

    (1.2.4)--英3.2.1 Definition of Linear Depe线性代数线性代数

    LinearAlgebra3.2.1DefinitionofLinearDependentofVectorGroupsandarecollinearGeometry:Thereisauniquerealscalark,suchthat=kTherearerealscalarssuchthat.Geometry:𝑘2¿𝑘1+𝑘2andarenotcollinear;and,arecoplanar.TherearerealscalarssuchthatTherearerealscalarssuchthatDefinitionVectorgroupislinearlydependent,iftherearescalarsthatarenotallzero,suchthatOtherwise,itisca...

    2024-06-080522.53 KB0
  • (1.2.3)--英3.1.3 Linear Representation and线性代数线性代数

    (1.2.3)--英3.1.3 Linear Representation and线性代数线性代数

    LinearAlgebra3.1.3LinearRepresentationandEquivalentofVectorGroups1.RelationshipBetweenVectorGroupsVectorgroupislinearlyrepresentedbyvectorgroupifeachvectorinthegroupcanberepresentedbythevectorsinthegroup.𝐵canbelinearlyrepresentedbyForexample,2030,1001,ButB:2030cannotbelinearlyrepresentedby1001,Definition,Proof:GivenSincevectorgroupislinearlyrepresentedbyvectorgroup,𝐴𝐵therearescalarssuchthatC...

    2024-06-080261.35 KB0
  • (1.2.2)--英3.1.2 Definition and Properties线性代数线性代数

    (1.2.2)--英3.1.2 Definition and Properties线性代数线性代数

    LinearAlgebra3.1.2DefinitionandPropertiesofLinearCombinationandLinearRepresentation;andarecollinear.Geometry:Thereisauniquerealscalarksuchthat=kCalled:canbelinearlyrepresentedby.Geometry:k1k2=k1+k2andarenotcollinear;,andarecoplanarTherearerealscalarsk1、k2suchthat=k1+k2Called:canbelinearlyrepresentedby,DefinitionGivenavectorgroup,sca...

    2024-06-080305.48 KB0
  • (1.2.1)--英3.1.1 Definition and Properties线性代数线性代数

    (1.2.1)--英3.1.1 Definition and Properties线性代数线性代数

    LinearAlgebra3.1.1VectorandLinearOperation)HorizontalAngleofFuselage:ElevationAngleofFuselage:AngleoftheWing:Todeterminethestatusoftheaircraft,a6-dimensionalvectorisrequired:Descriptionofaircraftflightstatus¿𝜽(𝟎≤𝜽<𝟐𝝅)𝝍(−𝝅<𝝍≤𝝅)𝝓(−𝝅𝟐≤𝝓≤𝝅𝟐)Todeterminethestatusoftheaircraft,thefollowing6parametersarerequired:Thepositionparametersofthefocusinspace:R:255G:255B:0R:255G:0B:255255...

    2024-06-080576.97 KB0
  • (20)--第2章矩 阵线性代数

    (20)--第2章矩 阵线性代数

    第2章矩阵主要内容1.高斯消去法2.矩阵的加法、数乘、乘法3.矩阵的转置、对称矩阵4.逆矩阵5.矩阵的初等变换和初等矩阵6.分块矩阵§2.1高斯消元法在第一章,求解n个未知数n个方程的线性方程组的克拉默法则。那么如何求解n个未知元m个方程的线性方程组?(mn)在本节我们进一步介绍在中学里所熟知的高斯消去法。高斯消去法是用代入消元法或加减消元法,化为容易求解的同解方程组。例1用加减消元法解三元一次方程组x12x25x32...

    2024-06-010396.97 KB0
  • (15)--6.1 二次型线性代数

    (15)--6.1 二次型线性代数

    在解析几何中,为了便于研究二次曲线cossin,sincos.xxyyxy把方程化为标准形22.mxnyd的几何性质,我们可以选择适当的坐标旋转变换ax2+bxy+cy2=d第6章二次型6.1二次型的定义和矩阵表示合同矩阵其中系数是数域F中的数,叫做数域F上的n元二次型(简称二次型)。实数域上的二次型简称实二次型。定义6.1n元变量x1,x2,,xn的二次齐次多项式212111121213131122222323222(,,,)22222nnnnnnnnfxxxaxa...

    2024-06-010176.39 KB0
  • (10)--4.1基和坐标线性代数

    (10)--4.1基和坐标线性代数

    主要内容Rn的基与向量关于基的坐标Rn中向量的内积标准正交基和正交矩阵说明:本章重点是第一节和第二节的内容,第三节至第六节的内容自己阅读.若时间允许,我们再做详细讨论.第4章向量空间和线性变换4.1Rn的基及向量关于基的坐标niijnnnnnn:R0,,0,1,0,,0,1,2,,;nAa,A0,AnnRn1RRnRin从前面的知识我们知道中的单位向量是线性无关的一个阶实矩阵如果则的个线性行向量和个列向量也都是线性无关的.我们...

    2024-06-0106.98 MB0
  • (8.14)--线性代数模拟测验(7)评分标准

    (8.14)--线性代数模拟测验(7)评分标准

    线性代数模拟测验(7)评分标准一.选择题(本大题共5小题,每小题3分,共15分)BDCDA二、填空题(本大题共5小题,每小题4分,满分20分)6.7.408.9.10.三、计算题(本大题共3小题,每小题8分,满分24分)11.解:--------4分--------8分12.解:原式--------2分--------4分--------6分--------8分13.解:---3分---6分故-------8分四、解答题(本大题共5小题,满分41分)第1页共3页14.解:--------4分因此向量组的秩--------6分向量...

    2024-06-010154 KB0
确认删除?
关注送VIP
  • 抖音扫码 私发账号
批量上传
意见反馈
上传者群
  • 上传QQ群点击这里加入QQ群
在线客服
  • 客服QQ点击这里给我发消息
回到顶部