天津滨海职业学院全日制高等职业教育毕业实践环节毕业设计(典型性项目)说明书POV旋转LED显示器的设计作者:主要内容简介现在是一个知识爆炸的新时代。新产品、新技术层出不穷,电子技术的发展更是日新月异。可以毫不夸张的说,电子技术的应用无处不在,电子技术正在不断地改变我们的生活,改变着我们的世界。近年来,随着电子产品的发展,人们对时钟的要求越来越高,而在对要求高之余,又要讲究有创意,新奇,所以在这个基础...
二年级下册平移和旋转专项练习(1)班级:姓名:1、画出将图形先向上平移3格、再向左平移8格后得到的图形2、填一填,画一画。1、由图1到图2向()平移()格图1图22、3、图3图5图4由图3到图4向()平移()格图7图6图5到图7,先向()平移了()格,再向()平移了()格,并把中间的图形(图6)画出来。二年级下册平移和旋转专项练习(2)班级:姓名:一、下列现象哪些是平移,画“-”;哪些是旋转,画“○”。二、仔细观察,填一...
LED旋转显示器的设计摘要基于视觉暂留原理,开发出了一种旋转式LED显示屏。在稳定旋转地载体上安装16个LED发光器件,静止时,各列发光管等间距分列排开,随着扫描速度的加快,在计算机软件精确的时序控制下,不断扫描出预设的文字,图案等。磁钢用来完成同步的。当霍尔传感器旋转到磁钢处,感应到它的存在就会恢复到最初状态,即使前一个过程没有显示完成。装在电机上的电路始终在高速旋转,我们就无法使用通常的方法来给电机供...
图形的旋转根底练习一、选择题1.如图,△将ABC绕点B顺时针旋转60°△得DBE,点C的对应点E恰好落在AB延长线上,连接AD.以下结论一定正确的选项是〔〕A.∠ABD=∠EB.∠CBE=∠CC.AD∥BCD.AD=BC2.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α〔0°<α<90°〕.假设∠1=112°,那么∠α的大小是〔〕A.68°B.20°C.28°D.22°3.如图,△OAB绕点O逆时针旋转70°△得到OCD,假设∠A=110°,∠D=30°,那么∠α的度数是〔...
11.圆的周长公式:2.圆的面积公式:C=2πrS=πr23602180nnrcr2360rns12scr或3.弧长的计算公式:4.扇形面积计算公式:复习:2•认识圆锥圆锥知多少34学习目标:1.了解圆锥母线的概念。2.理解圆锥的侧面积和全面积公式,并能解决有关圆锥的计算。5自学提纲:1.圆柱的的侧面积计算公式是什么?这个公式怎样得出?2.说出圆锥的各部分名称。3.圆锥的的侧面积计算公式是什么?这个公式怎样得出?4.阅读课本55页例3...
创情导入活动一:北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝,它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.12活动二:影子随处可见,你能举出生活中关于物体在光线的照射下形成影子的实例吗?3学习目标1.了解投影、投影面、平行投影和...
27.2等可能情形下的概率计算(3)1当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.一个因素所包含的可能情况另一个因素所包含的可能情况两个因素所组合的所有可能情况,即n在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式P(A)=m/n中计算.列表法中表格构造特点:当一次试验中涉及3个因素或更多的因素时,怎么办?2当一次试验中涉及3个因素或更多的因素时,用...
11.必然事件、不可能事件、随机事件、概率的概念?一、复习:(1)投掷一枚均匀的硬币1次,则P(正面朝上)=____;(2)袋中有6个除颜色外完全相同的小球,其中2个白球,2个黑球,1个红球,1个黄球,从中任意摸出1个球,则P(白球)=_____;P(黑球)=_____;P(红球)=______;P(黄球)=_______.12131316162、口答:2二、学习目标:1、在解决实际问题的过程中,体会随机的思想,进一步理解概率的意义。2、理解等可能情形下的随机事件的概率,会运用列...
1同学们听过“天有不测风云”这句话吧!它的原意是指刮风、下雨、阴天、晴天这些天气状况很难预料,后来它被引申为:世界上很多事情具有偶然性,人们不能事先判定这些事情是否会发生。2现在概率的应用日益广泛。本章中,我们将学习一些概率初步知识,从而提高对偶然事件发生规律的认识。降水概率90%人们果真对这类偶然事件完全无法把握、束手无策吗?不是!随着对事件发生的可能性的深入研究,人们发现许多偶然事件的发生也具有...
DQABCDA*B*C*D*ABCDA*B*C*D*ABCA*(B*)D*(C*)(1)(2)(3)1下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影?哪个是中心投影?图(2)(3)的投影线与投影面的位置关系有什么区别?(1)(2)(3)图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面).复习引入2学习目标1.了解物体正投影的含义2.理解正投影的性质31.什么是正投影?2.线段、平面图形、几何体的正投影有什么规律?3.正投影有哪些性质...
一、复习提问:1,什么叫圆周角?2,圆周角定理的内容是什么?3,圆周角的度数与它所对的弧的度数有什么关系?4,圆周角定理的推论1,2分别是什么?二、学习目标1,理解圆周角定理及其推论2,能运用圆周角定理及其推论解决相关问题。3,掌握相交弦定理及其推论1三、自学提纲一1、如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.ODCBA2.AB、AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=35°,求∠BOC的度数....
24.3圆周角(3)——圆内接四边形CODBAE1一、复习引入1.什么叫圆内接三角形?2.什么叫做圆内接四边形?圆内接四边形有什么性质呢?本节课我们来学习圆内接四边形的性质及其应用.二、学习目标1.了解圆内接多边形和多边形的外接圆定义2.掌握圆内接四边形的性质定理3.会运用圆内接四边形的性质解决相关问题2三、自学提纲看书本上第29-30页,解决以下问题1.什么叫圆内接多边形?什么叫多边形的外接圆?2.圆内接四边形的对角有什么关系...
25.2三视图(3)1复习引入:①想象:根据各视图想象从各个方向看到的几何体的形状;②定形:综合确定几何体(或实物原型)的形状;③定大小位置:根据三个视图“长对正,高平齐,宽相等”的关系,确定轮廓线的位置,以及各个方向的尺寸.1.由三视图描述几何体(或实物原型),一般步骤是什么?2.下面所给的三视图表示什么几何体?2学习目标:1.理解简单立体图形(包括相应展开图)与它的三视图的相互转化,明确三视图中的数据对应图形...
26.3用频率估计概率(2)11、当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时,如何求事件发生的概率呢?一、复习引入2、统计频率和概率有何区别和联系?2二、学习目标:1、通过实例进一步丰富对概率的认识,知道大量重复试验的频率可作为事件发生概率的估计值;2、分清等可能事件与非等可能事件的区别;3、进一步理解频率与概率的区别和联系;3三、自学提纲1、有一个正12面体,12个面上分别写有1到12这12个整数...