linearAlgebra3.2.2PropertiesoflinearCorrelationofVectorGroupsTheorem6VectorgroupA:islinearlydependent,ÛTherankofthematrixA=()<m(thenumberofvectors).VectorgroupA:islinearlyindependent,ÛTherankofthematrixA=()=m(thenumberofvectors).Note:1)Theconclusionalsoholdsfortherowvectorcase.ExampleDeterminethelinearcorrelationofvectorgroupSolution:LetObviously,usingTheorem6todeterminethecorrelationisverysi...
linearAlgebra3.2.1DefinitionoflinearDependentofVectorGroupsandarecollinearGeometry:Thereisauniquerealscalark,suchthat=kTherearerealscalarssuchthat.Geometry:𝑘2¿𝑘1+𝑘2andarenotcollinear;and,arecoplanar.TherearerealscalarssuchthatTherearerealscalarssuchthatDefinitionVectorgroupislinearlydependent,iftherearescalarsthatarenotallzero,suchthatOtherwise,itisca...
linearAlgebra3.1.3linearRepresentationandEquivalentofVectorGroups1.RelationshipBetweenVectorGroupsVectorgroupislinearlyrepresentedbyvectorgroupifeachvectorinthegroupcanberepresentedbythevectorsinthegroup.𝐵canbelinearlyrepresentedbyForexample,2030,1001,ButB:2030cannotbelinearlyrepresentedby1001,Definition,Proof:GivenSincevectorgroupislinearlyrepresentedbyvectorgroup,𝐴𝐵therearescalarssuchthatC...
AlinearProgrammingFormulationforGlobalInferenceinNaturalLanguageTasksDanRothWen-tauYihDepartmentofComputerScienceUniversityofIllinoisatUrbana-ChampaignPage2NaturalLanguageUnderstandingViewofSolvingNLPProblemsPOSTaggingChunkingParsingWordSenseDisambiguationNamedEntityRecognitionCoreferenceResolutionSemanticRoleLabelingPage3WeaknessesofPipelineModelPropagationoferrorsBi-Directionalinteraction...