角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法.角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法.类型一:等...
角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法.角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法.类型一:等...
成立条件:等腰三角形顶角互补模块一:认识“脚拉脚”模型1、等腰直角三角形的逆序脚拉脚基本图已知:△ABC、△ADE为等腰直角三角形,∠B=∠D=90°,AB=CB,AD=ED,点F为CE的中点。结论:BF=DF,BFDF.⊥法1:倍长中线+手拉手延长DF至点G,使得FG=FD,易证△DEF≌GCF△(SAS);所以CG=ED=AD,∠2=7∠;又∠1+2+3=360°∠∠,3+4+5+6+7=540°∠∠∠∠∠(五边形内角和),4=6=90°∠∠;所以∠3+5+7=1+2+3∠∠∠∠∠,所以∠1=5...
成立条件:等腰三角形顶角互补模块一:认识“脚拉脚”模型1、等腰直角三角形的逆序脚拉脚基本图已知:△ABC、△ADE为等腰直角三角形,∠B=∠D=90°,AB=CB,AD=ED,点F为CE的中点。结论:BF=DF,BFDF.⊥法1:倍长中线+手拉手延长DF至点G,使得FG=FD,易证△DEF≌GCF△(SAS);所以CG=ED=AD,∠2=7∠;又∠1+2+3=360°∠∠,3+4+5+6+7=540°∠∠∠∠∠(五边形内角和),4=6=90°∠∠;所以∠3+5+7=1+2+3∠∠∠∠∠,所以∠1=5...
共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。寻找共顶点旋转模型的步骤如下:(1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。两等边三角形两等腰直角三角形两任意等腰三角形*常见结论:连接BD、AE交于点F,连接CF,则有以下结论:(1)(2)...
共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。寻找共顶点旋转模型的步骤如下:R(1)寻找公共的顶点R(2)列出两组相等的边或者对应成比例的边R(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。两等边三角形两等腰直角三角形两任意等腰三角形*常见结论:连接BD、AE交于点F,连接CF,则有以下结论:(1)(2)(3...
【模型总结】R在求形如“QB+kPA”(k≠1)的式子最值问题时,关键是要通过相似三角形构造出与kPA相等的线段(即kPA=QC),将QB+kPA”型问题转化为“QB+QC”型将军饮马问题.当k=1时,加权逆等线就变成了逆等线拼接最值模型,此种情况属于权为1的特殊情况,只需通过全等三角形构造出相等线段即可,然后将问题变为常见的将军饮马问题求解即可.R需要注意:这里的QB、PA两条线段的延长线方向必须要有交叉,方能通过相似或全等三角形得...
【模型总结】在求形如“QB+kPA”(k≠1)的式子最值问题时,关键是要通过相似三角形构造出与kPA相等的线段(即kPA=QC),将QB+kPA”型问题转化为“QB+QC”型将军饮马问题.当k=1时,加权逆等线就变成了逆等线拼接最值模型,此种情况属于权为1的特殊情况,只需通过全等三角形构造出相等线段即可,然后将问题变为常见的将军饮马问题求解即可.需要注意的是这里的QB、PA两条线段的延长线方向必须要有交叉,方能通过相似或全等三角...
两线段和的最值问题,大家首先想到的都是“将军饮马”问题,即要求的两条线段有公共端点,或者平移后有公共端点.除了将军饮马问题外,还有一类两线段和的最值问题,两个动点的运动过程中,两条动线段始终保持着相等,我们可以在等线段处构造全等,从而将要求的两条线段拼接到一起,这就是今天咱们要说的逆等线最值问题.讲逆等线模型之前我们先来一波回忆:下图大家应该很熟:D为动点!特殊化证明:DE+DF的和为定值.一般化证明:DE+DF...
两线段和的最值问题,大家首先想到的都是“将军饮马”问题,即要求的两条线段有公共端点,或者平移后有公共端点.除了将军饮马问题外,还有一类两线段和的最值问题,两个动点的运动过程中,两条动线段始终保持着相等,我们可以在等线段处构造全等,从而将要求的两条线段拼接到一起,这就是今天咱们要说的逆等线最值问题.讲逆等线模型之前我们先来一波回忆:下图大家应该很熟:D为动点!特殊化证明:DE+DF的和为定值.一般化证明:DE+DF...
R【结论一】如图直线外一点A到直线上所有点的距离中,垂线段AM最小.R【结论二】如图,在三角形ABC中,M、N分别是DE、BC上的动点,连接AM,MN,求AM+MN的最小值。则有以下结论成立:过A作BC的垂线,垂足为Q,于DE相交于P,当M、N分别与P、Q重合时,AM+MN有最小值,即为AQ的长度.R方法点拨1.题型特征:①一定点②动点的运动轨迹为直线R2.模型本质:过定点作定直线的垂线,垂线段最短.【例1】.如图,在Rt△ABC中,∠BAC=90°,AB...
【结论一】如图直线外一点A到直线上所有点的距离中,垂线段AM最小.【结论二】如图,在三角形ABC中,M、N分别是DE、BC上的动点,连接AM,MN,求AM+MN的最小值。则有以下结论成立:过A作BC的垂线,垂足为Q,于DE相交于P,当M、N分别与P、Q重合时,AM+MN有最小值,即为AQ的长度.方法点拨1.题型特征:①一定点②动点的运动轨迹为直线2.模型本质:过定点作定直线的垂线,垂线段最短.【例1】.如图,在Rt△ABC中,∠BAC=90°...
一、两条线段和的最小值。基本图形解析:(一)、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:A、A’是关于直线m的对称点。2、在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。(1)两个点都在直线外侧:模型介绍PmABmABmABPmABAnmABQPnmABPQ(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A、B位于直线m,n的内侧,在...
一、两条线段和的最小值。基本图形解析:(一)、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:A、A’是关于直线m的对称点。2、在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。(1)两个点都在直线外侧:模型介绍PmABmABmABPmABAnmABQPnmABPQ(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A、B位于直线m,n的内侧,在...
1.射影定理定义①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.2.如图在Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,有射影定理如下:注意:直角三角形斜边上有高时,才能用射影定理!【例1】.在矩形ABCD中,BE⊥AC交AD于点E,G为垂足.若CG=CD=1,则AC的长是.【例2】.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,模型...
1.射影定理定义①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.2.如图在Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,有射影定理如下:R注意:直角三角形斜边上有高时,才能用射影定理!【例1】.在矩形ABCD中,BE⊥AC交AD于点E,G为垂足.若CG=CD=1,则AC的长是.模型介绍例题精讲①AD2=BD•DC;②AB2=BD•BC;AC2=CD•BC.解: 四边形ABCD是...
相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、A字型相似模型A字型(平行)反A字型(不平行)模型二、8字型与反8字型相似模型模型三、AX型相似模型(A字型及X字型两者相结合)模型四、共边角相似模型(子母型)模型探究模型五、手拉手相似模型考点一、A字相似模型【例1】.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开...
相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、A字型相似模型A字型(平行)反A字型(不平行)模型二、8字型与反8字型相似模型模型三、AX型相似模型(A字型及X字型两者相结合)模型四、共边角相似模型(子母型)模型探究模型五、手拉手相似模型考点一、A字相似模型【例1】.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开...
一线三等角:两个三角形中相等的两个角落在同一条直线上,另外两条边所构成的角与这两个角相等,这三个相等的角落在同一直线上,故称“一线三等角”如下图所示,一线三等角包括一线三直角、一线三锐角、一线三钝角类型一:一线三直角模型如图,若∠1、∠2、∠3都为直角,则有△ACP∽△BPD.321DBPAC类型二:一线三锐角与一线三钝角模型如图,若∠1、∠2、∠3都为锐角,则有△ACP∽△BPD.模型介绍3CDBPA证明: ∠DPB=180°-...
一线三等角:两个三角形中相等的两个角落在同一条直线上,另外两条边所构成的角与这两个角相等,这三个相等的角落在同一直线上,故称“一线三等角”如下图所示,一线三等角包括一线三直角、一线三锐角、一线三钝角类型一:一线三直角模型如图,若∠1、∠2、∠3都为直角,则有△ACP∽△BPD.321DBPAC类型二:一线三锐角与一线三钝角模型如图,若∠1、∠2、∠3都为锐角,则有△ACP∽△BPD.模型介绍3CDBPA证明: ∠DPB=180°-...