一、实对称矩阵的上Hessenberg化就是三对角化,TPAPH设为对称矩阵,的上Hessenberg分解为nnARA其中为对称三对角矩阵。HStep1选取Householde变换,使得1H11121He其中11111TaAA令11100HH111111111101000TaHAHHHA111211111211111200TaaHHHAHA2111AHAH其...
一、实对称矩阵的上Hessenberg化就是三对角化,TPAPH设为对称矩阵,的上Hessenberg分解为nnARA其中为对称三对角矩阵。HStep1选取Householde变换,使得1H11121He其中11111TaAA令11100HH111111111101000TaHAHHHA111211111211111200TaaHHHAHA2111AHAH其...
一、实对称矩阵的上Hessenberg化就是三对角化,TPAPH设为对称矩阵,的上Hessenberg分解为nnARA其中为对称三对角矩阵。HStep1选取Householde变换,使得1H11121He其中11111TaAA令11100HH111111111101000TaHAHHHA111211111211111200TaaHHHAHA2111AHAH其...
实际应用中遇到的多数特征值问题都是关于实矩阵的,所以自然希望设计只涉及实数运算的QR迭代。实Schur分解设nnAR,则存在正交矩阵nnQR,满足:11121222mmTmmRRRRRQAQR其中为实数或具有一对复共轭特征值的2阶方阵iiR此时由于复共轭特征值的存在,自然不能期望基本QR迭代收敛到一个上三角矩阵。(实Schur标准形)如何通过QR迭代快速找到实Schur标准形?H011hh210022h32h12h0023h33...
实际应用中遇到的多数特征值问题都是关于实矩阵的,所以自然希望设计只涉及实数运算的QR迭代。实Schur分解设nnAR,则存在正交矩阵nnQR,满足:11121222mmTmmRRRRRQAQR其中为实数或具有一对复共轭特征值的2阶方阵iiR此时由于复共轭特征值的存在,自然不能期望基本QR迭代收敛到一个上三角矩阵。(实Schur标准形)如何通过QR迭代快速找到实Schur标准形?H011hh210022h32h12h0023h33...
实际应用中遇到的多数特征值问题都是关于实矩阵的,所以自然希望设计只涉及实数运算的QR迭代。实Schur分解设nnAR,则存在正交矩阵nnQR,满足:11121222mmTmmRRRRRQAQR其中为实数或具有一对复共轭特征值的2阶方阵iiR此时由于复共轭特征值的存在,自然不能期望基本QR迭代收敛到一个上三角矩阵。(实Schur标准形)如何通过QR迭代快速找到实Schur标准形?H011hh210022h32h12h0023h33...
基本思想利用正交相似变换将一个给定的矩阵逐步约化为上三角矩阵或拟上三角矩阵的一种迭代方法QR方法的迭代格式设0nnAAC令111ARQ011AQR对矩阵进行QR分解0A122AQR再对矩阵进行QR分解1AQR方法是目前计算矩阵全部特征值的最有效的方法之一;具有收敛快、算法稳定等特点。一般地有:m1mmAQR12;;,,mmmARQm1HmmmmAQAQ矩阵序列中每一个矩阵都与原矩阵相似AmAQR方法的迭代算法:m1mmAQRmmmARQF...
基本思想利用正交相似变换将一个给定的矩阵逐步约化为上三角矩阵或拟上三角矩阵的一种迭代方法QR方法的迭代格式设0nnAAC令111ARQ011AQR对矩阵进行QR分解0A122AQR再对矩阵进行QR分解1AQR方法是目前计算矩阵全部特征值的最有效的方法之一;具有收敛快、算法稳定等特点。一般地有:m1mmAQR12;;,,mmmARQm1HmmmmAQAQ矩阵序列中每一个矩阵都与原矩阵相似AmAQR方法的迭代算法:m1mmAQRmmmARQF...
基本思想利用正交相似变换将一个给定的矩阵逐步约化为上三角矩阵或拟上三角矩阵的一种迭代方法QR方法的迭代格式设0nnAAC令111ARQ011AQR对矩阵进行QR分解0A122AQR再对矩阵进行QR分解1AQR方法是目前计算矩阵全部特征值的最有效的方法之一;具有收敛快、算法稳定等特点。一般地有:m1mmAQR12;;,,mmmARQm1HmmmmAQAQ矩阵序列中每一个矩阵都与原矩阵相似AmAQR方法的迭代算法:m1mmAQRmmmARQF...
分类号:TP391密级:UDC:681学校代码:11906硕士学位论文QR码识别技术及在手机中的应用董强指导老师于忠清教授学科专业名称计算机软件与理论论文提交日期2006年5月论文答辩日期答辩委员会主席青岛大学硕士学位论文摘要一维条码在生产和生活的各个方面得到了广泛的应用,并极大的提高了生产率,但是一维条码本身的缺点,信息量小、依赖数据库等也日益的现露出来。因此,二维条码运用而生,二维条码本身具有高容量、高密度、纠错能力...