第7章一次方程组7.4实践与探索第2课时列方程组解应用题1题意1.列方程组解决实际问题的一般步骤:一审,审______,找___________;二设,设未知数,可直接设元,也可__________;三列,根据题目中的____________,列出方程组;四解,解方程组;五检,检验解的正确性和是否符合_____________;六答.2.用二元一次方程组解决实际问题一定含有________未知量,能找到_________等量关系.相等关系相等关系间接设元实际意义两个两...
第五章二元一次方程组1认识二元一次方程组1课前预习1.已知方程是关于x,y的二元一次方程,则m=,n=.2.下列各组数值是二元一次方程x+y=7的解的是()-12B2课前预习3.下列方程组属于二元一次方程组的是()4.下列各组数值是方程组的解的是()DB3课堂讲练新知1二元一次方程的概念典型例题【例1】方程2x-3y=5,xy=3,x+=1,3x-y+2z=0,x2+y=6中,是二元一次方程的有()A.1个B.2个C.3个D.4个A4课堂讲练【例2】甲班有男生x人,女生y人...
1例1一群学生前往电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.问题:根据这些信息,请你推测这群学生共有多少人?分析:本题的等量关系是①男生人数-1=女生人数;②女生人数-1=男生人数的一半.解:设男生有x人,女生有y人,由题意得x-1=y,y-1=21x,解得x=4,y=3,∴x+y=7...
*8.4三元一次方程组的解法1【基础梳理】1.三元一次方程:含有_____未知数,并且含有未知数的项的_____都是__,这样的方程叫做三元一次方程.三个次数122.三元一次方程组:含有_____未知数,每个方程中含有未知数的项的_____都是__,并且一共有_____方程,这样的方程组叫做三元一次方程组.三个次数1三个33.“”解三元一次方程组的基本思路:通过代入或“”加减进行_____“”,把三元_____“”二元,使解三元一次方程组转化为解___...
第八章二元一次方程组8.4三元一次方程组解法(1)1问题1:二元一次方程组是怎样定义的?解二元一次方程组的基本思路是什么?基本方法有哪些?2思考:上面的问题中,你可以设几个未知数,怎样列出方程组?问题2:小明有12张面额分别1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元纸币各多少张?3问题3:请你观察这个方程组,它有什么特征?含有三个方程;含有三个不同的未知数;未知数的...
12345678910111213141516171819202122
第1课时8.3实际问题与二元一次方程组1列一元一次方程解应用题的一般步骤是什么?⑴设:用字母表示题目中的一个未知数.一般情况下,问什么设什么(直接设未知数法).当然还有“间接设未知数法”“设辅助未知数法”.⑵列:根据所设未知数和找到的等量关系列方程.⑶解:解方程,求未知数的值.⑷答:检验所求解,写出答案.怎样用二元一次方程组解应用题?21.学会用二元一次方程组解决调配问题.2.归纳出列二元一次方程组解决实际问题的一...
第7章一次方程组7.2二元一次方程组的解法第1课时代入消元法1一元一次1.通过“代入”消去一个未知数,将方程组转化为____________方程来解的方法叫做代入消元法,简称代入法.2.代入法的基本思想是_______,它体现了数学中的“转化思想”,这种方法的关键是适当变形,灵活代入.消元2AD知识点:代入消元法1.用代入法解方程组2x+y=2①,3x-2y=-4②.较简单的方法是()A.由①变形,消去yB.由①变形,消去xC.消...
123456789101112131415161718
第五章二元一次方程组5应用二元一次方程组——里程碑上的数1课堂十分钟1.(4分)一个两位数,个位数字比十位数字大1,这个两位数除以它的各位数字之和,商是5,余数是1.求这个两位数.设十位数字为x,个位数字为y,则下列方程组正确的是()C22.(4分)甲乙两人在相距18km的两地,若同时出发相向而行,经2h相遇;若同向而行,且甲比乙先出发1h去追乙,那么在乙出发后经4h两人相遇,求甲、乙两人的速度.设甲的速度为xkm/h,乙的速...
8.1二元一次方程组第八章二元一次方程组11.什么叫方程?含有未知数的等式叫做方程.2.什么叫一元一次方程?在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.如:2x+3=5,x+y=8.如:2x+3=5,y+6=8.3.解下列方程:(1)3x+2=14(2)2x-4=14-x2篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?你会用你学过的一元...
1例1有两个长方形,第一个长方形长与宽之比为5∶4,第二个长方形的长、宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.2分析:本例中涉及的数量关系较多,可以通过列表帮助思考:长宽周长第一个长方形5x4x2(5x+4x)第二个长方形3y3y2(3y+2y)再根据题中第一个长方形周长=第二个长方形周长+112和第一个长方形的宽=第二个长方形的长×2+6...
1例1用代入法解方程组x-y=3,①3x-8y=14.②分析:选取①,因为①中未知数x的系数为1,用含y的代数式表示x比较简便,把①变形为x=3+y,代入②求解.解:把①变形为x=3+y.③将③代入②,得3(3+y)-8y=14,解得y=-1.把y=-1代入③,得x=2.∴方程组的解是x=2,y=-1.2注意点:用“代入法”解方程组时,选择由哪一个方程变形代入到另一个方程中要注意技巧.若方程组中某个未知数在一个方程中的系数是1或-1时,应用移项法则,变形为此未...
第五章二元一次方程组4应用二元一次方程组——增收节支1课堂十分钟1.(4分)一种蔬菜加工后出售,单价可提高20%,但重量减少10%.现有未加工的这种蔬菜30kg,加工后可以比不加工多卖12元,则这种蔬菜加工前和加工后每千克各卖多少元?设这种蔬菜加工前每千克卖x元,加工后每千克卖y元,根据题意,下列所列方程组正确的是()C22.(4分)春节前夕,某旅游景区的成人票和学生票均对折,李凯同学一家(2个成人和1个学生)去了该景区...
第八章二元一次方程组8.3实际问题与二元一次方程组(3)1问题1:如图,长青化工厂与A,B两地有公路、铁路相连.工厂从A地购买原料运回工厂,每吨运费180元,再把产品从工厂运到B地销售,每吨的运费为204元,试求路、公路运的价是多少元/(吨千米)?公路20km长青化工厂BA铁路120km铁路110km公路10km2如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地...
1234567891011121314151617
第五章二元一次方程组1认识二元一次方程组1课堂十分钟1.(5分)下列属于二元一次方程的是()A.4-3x+2yB.+y=2C.5xy-2=3xD.3x+2y=62.(5分)已知是方程2x-ay=3的一个解,那么a的值是()A.1B.3C.-3D.-1DA=-1y,=1x23.(5分)若是方程组的解,则m+n的值是()A.1B.-1C.2D.-24.(5分)下列方程组其中不是二元一次方程组的是.B(2)(3)(5)=1y=2,x+y=1nx+(m-1)y=2,2x35.(10分)根据题意列出方程组:(1)明...
第五章二元一次方程组7二元一次方程组确定一次函数表达式1课前预习1.直线y=kx+b在坐标系中的位置如图5-7-1所示,则k,b的值分别为()A.k=-,b=-1B.k=-,b=1C.k=,b=-1D.k=,b=1B2课前预习2.在等式y=kx+b中,当x=-1时,y=0;当x=0时,y=-1.则这个等式是()A.y=-x-1B.y=-x+1C.y=x-1D.y=x+1A3课前预习3.某航空公司规定,旅客乘机携带行李的质量x(kg)与其运费y(元)的关系式由如图5-7-2所示的一次函数图象确定,则旅客可免费携带行...
1234567891011121314151617181920